Equations involving fractional Laplacian operator: Compactness and application
نویسندگان
چکیده
منابع مشابه
A probabilistic approach for nonlinear equations involving the fractional Laplacian and a singular operator
We consider a class of nonlinear integro-differential equations involving a fractional power of the Laplacian and a nonlocal quadratic nonlinearity represented by a singular integral operator. Initially, we introduce cut-off versions of this equation, replacing the singular operator by its Lipschitz continuous regularizations. In both cases we show the local existence and global uniqueness in L...
متن کاملEigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملp-Laplacian Type Equations Involving Measures
This is a survey on problems involving equations −divA(x,∇u) = μ, where μ is a Radon measure and A : Rn ×Rn → Rn verifies Leray-Lions type conditions. We shall discuss a potential theoretic approach when the measure is nonnegative. Existence and uniqueness, and different concepts of solutions are discussed for general signed measures. 2000 Mathematics Subject Classification: 35J60, 31C45.
متن کاملSolutions of fractional differential equations with p-Laplacian operator in Banach spaces
In this paper, we study the solutions for nonlinear fractional differential equations with p-Laplacian operator nonlocal boundary value problem in a Banach space. By means of the technique of the properties of the Kuratowski noncompactness measure and the Sadovskii fixed point theorem, we establish some new existence criteria for the boundary value problem. As application, an interesting exampl...
متن کاملA class of BVPs for nonlinear fractional differential equations with p-Laplacian operator
In this paper, we study a class of integral boundary value problems for nonlinear differential equations of fractional order with p-Laplacian operator. Under some suitable assumptions, a new result on the existence of solutions is obtained by using a standard fixed point theorem. An example is included to show the applicability of our result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2015
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2015.04.012